Fertigation Chemigation

Jim Schepers (retired)

Center-Pivot Fertigation

Self-Contained Fertigation Unit

Fertigation Components

Anti-Siphon Devices

FLOW

Figure 3. Detail of an anti-siphon device (drawn by Dale Baker)

Chemical Safeguards

• Essential components

back-flow restriction electric inter-lock supply tank over-flow protection flow meter

- Over-application of N if pivot stalls but continues to apply water
- Double-check calibration and periodically verify application rate

Uniformity of Water Application

• Poor water uniformity in water application results in poor uniformity of N application

rotation speed not adjusted for area being watered / pressure changes improper nozzle sizes non-uniform pressures (regulators) canopy interference problems

Irrigation Design Flaws

Irrigation Design Flaws

Nozzle in canopy

and hat the statistic statistic to the first the first of the

More uniform water distribution - Hopefully

End-gun "OFF"

Uniformity Concerns: (May Turn Into Huge Yield Concerns)

Nozzle Considerations

- Closely spaced nozzles result in greater uniformity (operate under lower pressures)
- Large droplet size is preferred
- Fine particles result in greater evaporation
- Insure adequate overlap of spray patterns
- Check for plugged nozzles
- Need for pressure regulators

Drop-Nozzles

Variable Rate Irrigation

Water Application Efficiency LOSSES

Low-Angle Impact Sprinkler ~15%

Spray Heads

LEPA*

*LEPA – Low Energy Precision Application

2%

8%

N Loss Potential

• Greater losses when:

High pH water (salty)

- High temperatures
- Low humidity
- Windy conditions

High pressures (small particle size)

N Application Rate

- High N concentrations in water can "shock" corn plants
- Might need to fertigate even if soil contains adequate supply of water
- Commonly used N application rates:
 20# N / 1-inch
 30# N / 1.5-inches
- Ammonium Thiosul (12-0-0-26) has some therapeutic value

Example : Soil NO₃-N (silt loam)

Residual Soil N (60 lb / ac-ft)

(3.6 million lb / ac-ft)

50% Porosity

ADD Water

~16.7 lb NO₃-N / million lb soil (ppm)

Field Capacity

60 lb NO₃-N / ac-ft

60 lb NO₃-N in 0.68 million lb water

(226,512 lb / ac-in)

88 ppm NO₃-N in soil water

Need to Fertigate ???

- Imagery can show spatial patterns, but need to be verified as to the cause
- Leaf N concentration decreases as plant matures
- DRIS analysis (tissue testing) can help evaluate other nutrient imbalances
- Consider growth stage and N uptake pattern

Early symptom

Mexico - April, 2008

Landsat

~60-ft resolution

1-ft resolution

August 20, 2005

Seed roduction

2-ft spatial resolution

Color Infrared

sectors and the baller of the sector of the

2.5 ac Grid Sampling

~300-ft resolution 1 point / 2.5 ac

0.5-ac Grid Sampling

150-ft resolution2 points / ac

Yield Monitor

~12-ft resolution 100 points / ac

Aerial Photograph

~1-ft resolution ~40,000 points / ac

Timing of N Applications

- Anticipate growth stages with critical N needs and future requirements
- Late-season N applications are likely to be ineffective
- Cool and wet soils have reduced mineralization
- Warm wet soils can have high denitrification losses

Rows of Kernels

N Form and Problems

- Volatile losses of anhydrous ammonia is higher than UAN (raises pH)
- 32% UAN can "salt-out" under cold conditions
- Anhydrous ammonia will increase pH and cause precipitation of Ca and Mg salts
- Little direct foliar uptake of UAN
- P in DAP stays in surface soil

Plant Response Time

- Measure SPAD meter changes within 3 days
- Visually see canopy changes within a week
- Severe N deficiencies can not be corrected with fertigation
- Modest N stresses at specific growth stages can reduce yield potential

H+

pН

.....

$NH_3 + H_2O = NH_4OH$

OH-

SO₄-2

Some Useful Things to Know

0.228 lb N/acre-inch/ppm nitrate-N

~450 gal/min = 1 acre-inch/hr

~27,300 gal/acre-inch

1 gal/hr x 2.133 = ml/min

Density of **32% UAN** = 11.06 lb/gal 32% UAN contains 3.54 lb N/gal Salts out @ 32° F

Density of **28% UAN** = 10.65 lb/gal 28% UAN contains 3.0 lb N/gal Salts out @ 5° F

Don't Overlook the Freebies in Water

Nitrate Ibs N/acre

(inches) x (ppm) x 0.227

(mm) x (ppm) x 0.01

or

(Na, Ca, Mg)

Irrigation with High Nitrate Water

Fertigation

30 mg/L NO₃-N water

3.0 kg N/ha-cm6.6 lb N/acre-inch

Sample Calculation

 Apply 20 lb N as UAN per acre on 130-ac field with 900 gal/min in 1.0" water application

13.2 gal/hr x hr/60 min x 128 oz/gal = 28.16 oz/min

28.16 oz/min x 29.51 ml/oz = 831 ml/min

Don't Irrigate ???

Have access to high-clearance sprayer

Think about crop sensors

Hannibal, MO - 2008

ch" Strip

6

50 kg/ha preplant

2008 Studies

Six fields \$14-119/acre benefit

<u>2009 Studies</u> 21 fields Averaged \$23/acre benefit

Jim Schepers 402-310-6150 james.schepers@gmail.com